In Python, data types define the type of value a variable can hold. Python is a dynamically typed language, meaning you don’t have to declare a variable’s type explicitly—it is determined automatically based on the assigned value.
Python has the following built-in data types:
Category |
Data Types |
Example |
---|---|---|
Numeric Types |
|
|
Sequence Types |
|
|
Set Types |
|
|
Mapping Type |
|
|
Boolean Type |
|
|
Binary Types |
|
|
1. Integers and Floats (Numeric Types)
a) Integers (int
)
- Whole numbers, positive or negative, without decimals.
- Example:
x = 10 # Integer y = -5 # Negative Integer print(type(x)) # Output: <class 'int'>
b) Floating-Point Numbers (float
)
- Numbers with decimal points.
- Example:
pi = 3.14159 # Float weight = -45.6 print(type(pi)) # Output: <class 'float'>
c) Type Conversion (int
↔ float
)
- Convert an integer to a float and vice versa:
a = 10 b = float(a) # Converts 10 to 10.0 c = int(3.99) # Converts 3.99 to 3 (truncates decimal)
2. Strings (str
)
- Strings are sequences of characters enclosed in single (
'
), double ("
), or triple ('''
) quotes. - Example:
name = "Nitin Prajapati" greeting = 'Hello, World!' paragraph = """This is a multi-line string""" print(type(name)) # Output: <class 'str'>
String Operations
text = "Python"
# Concatenation
print(text + " is awesome!") # Output: Python is awesome!
# Repetition
print(text * 3) # Output: PythonPythonPython
# Indexing
print(text[0]) # Output: P
# Slicing
print(text[1:4]) # Output: yth
# String Length
print(len(text)) # Output: 6
3. Lists (list
)
- Lists are ordered, mutable (changeable) collections of elements.
- Can contain different types:
int
,float
,str
, etc. - Defined using square brackets (
[]
).
List Example
numbers = [10, 20, 30, 40]
mixed_list = [1, "Hello", 3.14]
# Accessing elements
print(numbers[0]) # Output: 10
# Modifying lists
numbers.append(50) # Adds 50 to the end
numbers[1] = 25 # Modifies the second element
# List slicing
print(numbers[1:3]) # Output: [25, 30]
List Methods
numbers = [5, 3, 8, 1]
numbers.append(10) # Add 10 to the end
numbers.insert(2, 15) # Insert 15 at index 2
numbers.remove(3) # Remove 3 from the list
numbers.sort() # Sorts the list
numbers.reverse() # Reverses the list
print(numbers) # Output: [10, 8, 5, 1]
4. Tuples (tuple
)
- Tuples are ordered, immutable (unchangeable) collections of elements.
- Defined using parentheses (
()
).
Tuple Example
coordinates = (10.5, 20.3)
colors = ("red", "green", "blue")
# Accessing elements
print(colors[1]) # Output: green
# Tuples are immutable
# colors[1] = "yellow" # ❌ This will cause an error
Tuple Packing & Unpacking
point = (4, 5)
x, y = point # Unpacking
print(x) # Output: 4
print(y) # Output: 5
5. Dictionaries (dict
)
- Dictionaries are unordered key-value pairs.
- Defined using curly braces (
{}
).
Dictionary Example
person = {
"name": "Nitin",
"age": 25,
"city": "Delhi"
}
# Accessing values
print(person["name"]) # Output: Nitin
# Modifying dictionary
person["age"] = 26
# Adding a new key-value pair
person["job"] = "Software Engineer"
# Deleting a key
del person["city"]
print(person) # Output: {'name': 'Nitin', 'age': 26, 'job': 'Software Engineer'}
Dictionary Methods
print(person.keys()) # Get all keys
print(person.values()) # Get all values
print(person.items()) # Get key-value pairs
6. Sets (set
)
- Sets are unordered, mutable collections of unique elements.
- Defined using curly braces (
{}
). - Duplicate values are automatically removed.
Set Example
fruits = {"apple", "banana", "cherry", "apple"}
print(fruits) # Output: {'banana', 'cherry', 'apple'} (removes duplicates)
Set Operations
A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
print(A | B) # Union: {1, 2, 3, 4, 5, 6}
print(A & B) # Intersection: {3, 4}
print(A - B) # Difference: {1, 2}
Summary Table of Python Data Types
Data Type |
Mutable? |
Ordered? |
Duplicates Allowed? |
Example |
---|---|---|---|---|
|
❌ No |
N/A |
✅ Yes |
|
|
❌ No |
N/A |
✅ Yes |
|
|
❌ No |
✅ Yes |
✅ Yes |
|
|
✅ Yes |
✅ Yes |
✅ Yes |
|
|
❌ No |
✅ Yes |
✅ Yes |
|
|
✅ Yes |
✅ Yes (Python 3.7+) |
❌ No (Unique keys) |
|
|
✅ Yes |
❌ No |
❌ No |
|
Conclusion
Python provides various built-in data types to handle different kinds of data. Understanding these types is essential for writing efficient Python programs.