Functions in Python

Functions in Python allow code reusability, modularity, and better readability. A function is a block of reusable code that performs a specific task.

Python supports two types of functions:

  1. Built-in Functions – Functions that come with Python. (e.g., print(), len(), input())
  2. User-Defined Functions – Functions created by the programmer to perform specific tasks.

1. Defining a Function in Python

A function is defined using the def keyword.

Syntax:

def function_name(parameters):
    """Optional docstring"""
    # Function body
    return value  # (Optional)

Example: A Simple Function

def greet():
    print("Hello, Welcome to Python!")
greet()

Output:

Hello, Welcome to Python!

2. Function with Parameters

Functions can take parameters as input.

Example: Function with a Single Parameter

def greet(name):
    print("Hello", name, "Good Morning!")
greet("Alice")

Output:

Hello Alice Good Morning!

Example: Function to Calculate Square

def square(num):
    print("Square of", num, "is", num * num)
square(5)

Output:

Square of 5 is 25

3. Return Statement in Functions

The return statement is used to return a value from a function.

Example: Function that Returns a Value

def add(a, b):
    return a + b
result = add(10, 20)
print("Sum:", result)

Output:

Sum: 30

4. Function with Default Parameters

You can define default values for parameters.

Example: Default Parameter Function

def greet(name="Guest"):
    print("Hello", name)
greet()  # Uses default value
greet("Bob")

Output:

Hello Guest
Hello Bob

5. Function with Keyword Arguments

Keyword arguments allow calling a function by specifying parameter names.

Example: Keyword Arguments

def student_info(name, age):
    print("Name:", name)
    print("Age:", age)
student_info(age=21, name="Alice")

Output:

Name: Alice
Age: 21

6. Function with Variable-Length Arguments

Python provides *args and **kwargs to pass multiple arguments.

Example: *args for Multiple Positional Arguments

def add(*numbers):
    total = sum(numbers)
    print("Sum:", total)
add(10, 20, 30)
add(5, 15, 25, 35)

Output:

Sum: 60
Sum: 80

Example: **kwargs for Multiple Keyword Arguments

def student_info(**details):
    for key, value in details.items():
        print(key, ":", value)
student_info(name="Alice", age=22, course="Python")

Output:

name : Alice
age : 22
course : Python

7. Recursive Functions

A recursive function is a function that calls itself.

Example: Factorial using Recursion

def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)
print("Factorial of 5:", factorial(5))

Output:

Factorial of 5: 120

πŸ”Ή Advantages of Recursion:

  • Helps in solving problems that can be broken down into smaller subproblems.
  • Reduces code length and improves readability.

8. Anonymous (Lambda) Functions

A lambda function is a small, unnamed function that is defined using the lambda keyword.

Syntax:

lambda arguments: expression

Example: Lambda Function for Square Calculation

square = lambda x: x * x
print("Square of 4:", square(4))

Output:

Square of 4: 16

Example: Lambda Function for Adding Two Numbers

add = lambda a, b: a + b
print("Sum:", add(5, 10))

Output:

Sum: 15

πŸ”Ή Why Use Lambda Functions?

  • Used for quick operations without defining full functions.
  • Often used with functions like map(), filter(), and reduce().

9. map(), filter(), and reduce() Functions

map() – Applies a Function to All Elements in a List

numbers = [1, 2, 3, 4, 5]
squared_numbers = list(map(lambda x: x * x, numbers))
print(squared_numbers)

Output:

[1, 4, 9, 16, 25]

filter() – Filters Elements Based on a Condition

numbers = [1, 2, 3, 4, 5, 6]
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers)

Output:

[2, 4, 6]

reduce() – Reduces a List to a Single Value

from functools import reduce
numbers = [1, 2, 3, 4, 5]
sum_numbers = reduce(lambda x, y: x + y, numbers)
print(sum_numbers)

Output:

15

10. Nested Functions

A function defined inside another function is called a nested function.

Example: Nested Function

def outer():
    print("Outer function started")

    def inner():
        print("Inner function executed")
    
    inner()
outer()

Output:

Outer function started
Inner function executed

11. Function Decorators

A decorator is a function that modifies another function's behavior.

Example: Function Decorator

def decorator(func):
    def wrapper():
        print("Function is being called")
        func()
        print("Function execution completed")
    return wrapper

@decorator
def say_hello():
    print("Hello!")

say_hello()

Output:

Function is being called
Hello!
Function execution completed

12. Global and Local Variables in Functions

Example: Local Variable

def demo():
    x = 10  # Local variable
    print("Local x:", x)
demo()
# print(x)  # Error: x is not accessible outside the function

Example: Global Variable

x = 10  # Global variable
def demo():
    print("Global x:", x)
demo()

Output:

Global x: 10

Conclusion

  • Functions make code reusable and modular.
  • def keyword defines a function, and return can return values.
  • Parameters allow dynamic inputs.
  • Lambda functions provide concise anonymous functions.
  • Recursion helps solve complex problems.
  • Decorators and nested functions enhance functionality.